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Waves in Near-Earth Space

4Credits: NASA's Goddard Space Flight Center/Mary Pat Hrybyk-Keith

• Radio waves in the near-Earth 

space environment are generated 

via several different processes

• One major classes of waves are 

whistler-mode waves in the 

ELF/VLF band (<30 kHz).
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Inner Magnetosphere
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Background Cold 

Plasma:

E ~ 1 eV (12,000o K)

N ~ 100 - 1000 el/cc

Inner Magnetosphere
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Radiation Belts

E ~ 0.1 - 10 

MeV

N ~ 0.1 - 1 el/cc

Inner Magnetosphere



Gyro-frequency
(𝑓𝐶 =

𝜔𝑐

2𝜋
, 1-100 kHz range)

 Electron gyromotion due to geomagnetic field.

Inner Magnetosphere
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Whistler Mode Waves

(ELF/VLF, < 30kHz)

Inner Magnetosphere

Radiation Belts

E ~ 0.1 - 10 

MeV

N ~ 0.1 - 1 el/cc



 Exists only in magnetized plasmas.

 ELF/VLF range in the magnetosphere: < 30 kHz.

Whistler Mode Waves

Whistler-mode
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Radiation Belts

E ~ 0.1 - 10 

MeV

N ~ 0.1 - 1 el/cc

Background Cold 

Plasma:

E ~ 1 eV (12,000o K)

N ~ 100 - 1000 el/cc

Whistler Mode Wves

Inner Magnetosphere

Whistler Mode Waves

(ELF/VLF, < 30kHz)



Electron

Wave
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Gyro-resonance

 Whistler-mode Waves can 

interact with electrons via 

Doppler-shifted-cyclotron 

resonance (gyro-resonance).

 Resonant electrons can transfer 

large amounts of energy to/from 

waves.

 Understanding characteristics of 

whistler-mode waves is crucial to 

space weather modeling! 

Wave-Particle Interactions



Classes of Whistler Mode Waves
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Naturally Sourced:

• Chorus

• Hiss

• Lightning-Whistlers

Artificially Sourced:

• VLF transmitters + Triggered Emissions
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Lightning Whistlers
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• ELF/VLF waves are typically analyzed using spectrograms (STFT).

• Whistlers are observed on a spectrogram as descending tones.

Whistlers



Lightning Whistlers
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• Whistlers are in the VLF 

band (<30 kHz). 

• Acoustic waves in the VLF 

band are audible.

• The name “whistler” 

reflects the descending 

whistle-like sound when 

listened to.

From RBSP in 2015 (https://youtu.be/ZVlZ5ikvet8) 

https://youtu.be/ZVlZ5ikvet8


Very Brief History of Whistlers
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• First comprehensive investigation of whistlers was by Storey, 1953.
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Very Brief History of Whistlers
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• First comprehensive investigation of whistlers was by Storey, 1953.

𝑡~
1

𝑓



Where do Whistlers Come From?
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• Lightning EMPs (sferic) can leak into the magnetosphere and 

propagated in the whistler-mode:
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Whistler

Source Lightning “Sferic"

𝑡𝑔 𝑓 ~
1

𝑓

Where do Whistlers Come From?



Whistlers: Plasmasphere Remote Sensing
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• The whistler shape (and/or “nose frequency”) can be used to remotely 

determine the plasmasphere’s electron density…𝑡𝑔~ 𝑁𝑒

Park et al., 1978Carpenter, 1988



Whistlers: LEP Events
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• Whistlers can interact with 

radiation belt electrons via 

gyro-resonance.

• Some of these electrons 

can precipitate onto the 

atmosphere/ionosphere.

• Precipitation can distort 

sub-ionospheric VLF 

signals.

Johnson et al., 1999



Whistlers: Triggering
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• Whistlers can trigger free-running emissions and emissions that 

resemble upper-band chorus.

Hosseini et al., 2019Nakamura and Ondoh, 1989



Detecting Whistlers
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• Understanding whistler 

impacts is an important 

component space weather.

• Automated detection is 

required to gain a thorough 

statistical picture.

• Realistic data (especially 

ground-based data), is very 

noisy which makes 

automation difficult. 
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Traditional Signal Detection
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• Traditional signal detection techniques utilize information about the 

signal’s structure (shape, duration, etc.).

• The most common method utilizes a cross-correlating with the 

expected signal. This is known as a matched filter.

By El pak at English Wikipedia - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1874370



Example: Bit Stream Detection
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• Consider the case of detecting bits represented by rectangular pulses

• Examples of “1” and “0” are below:
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• More generally a bit stream can be represented by a sequence of 1s 

and 0s:
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• More generally a bit stream can be represented by a sequence of 1s 

and 0s:
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• More generally a bit stream can be represented by a sequence of 1s 

and 0s:

1
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and 0s:

1 1
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• More generally a bit stream can be represented by a sequence of 1s 

and 0s:
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Example: Bit Stream Detection
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• More generally a bit stream can be represented by a sequence of 1s 

and 0s:

1 1 0 1 0 0



Example: Bit Stream Detection
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• The individual bits can be detected using a matched filter (cross-

correlation):



Example: Bit Stream Detection
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• The individual bits can be detected using a matched filter (cross-

correlation):



Example: Bit Stream Detection
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• The individual bits can be detected using a matched filter (cross-

correlation):

Slide and Integrate



Example: Bit Stream Detection
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• The output of the matched filter has positive peaks for “1” and 

negative peaks for “0”.
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Example: Bit Stream Detection
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• The output of the matched filter has positive peaks for “1” and 

negative peaks for “0”.

1
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Example: Bit Stream Detection
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• The output of the matched filter has positive peaks for “1” and 

negative peaks for “0”.

1 1 0



Example: Bit Stream Detection
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• The output of the matched filter has positive peaks for “1” and 

negative peaks for “0”.

1 1 0 1 0 0



Example: Noisy Bit Stream Detection
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• In practice, realistic signals are received in a noisy environment: 



Example: Noisy Bit Stream Detection
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• The matched filter output is almost the same as the for noise-free 

environment!



Example: Noisy Bit Stream Detection
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• The matched filter technique works extremely well in a noisy 

environment!

1 1 0 1 0 0



Extension to Whistler Detection

51

This type of “template matching” technique has been quite successful 

when applied to detecting whistlers (see Lichtenberger et al. 2008):
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Extension to Whistler Detection
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This type of “template matching” technique has been quite successful 

when applied to detecting whistlers (see Lichtenberger et al. 2008):

Whistler Template



Traditional Signal Extraction Methods

57

Modified versions of this technique have been successful when applied 

to detecting various types of whistler-mode waves…they all require 

explicit knowledge of the signal structure!

Compston, 2016 Gupta et al., 2021



Machine Learning Methods
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• We now have thousands of 

events of waves relevant to the 

space environment.

• Large datasets permit the use 

of data-driven models.

• Machine learning approaches 

are becoming very useful for 

detecting/extracting signals 

from the space environment.

Golden 2011
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https://venturebeat.com/2019/05/20/googles-lung-cancer-detection-ai-
outperforms-6-human-radiologists/

Original Spectrogram Extracted Whistlers

Machine Learning Applications

Harid et al., 

2021 (GRL)

https://ai.googleblog.com/2019/03/rnn-based-handwriting-recognition-in.html
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https://venturebeat.com/2019/05/20/googles-lung-cancer-detection-ai-
outperforms-6-human-radiologists/

Machine Learning Applications

https://ai.googleblog.com/2019/03/rnn-based-handwriting-recognition-in.html

Original Spectrogram Extracted Whistlers

Harid et al., 

2021 (GRL)
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• Supervised Learning describes machine learning models that are 

trained with labeled “ground truth” data.

Supervised Learning
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• Supervised Learning describes machine learning models that are 

trained with labeled “ground truth” data.

Supervised Learning

Input Cases
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• Supervised Learning describes machine learning models that are 

trained with labeled “ground truth” data.

Input Cases

Output Label 0 1 1 7 0

Supervised Learning
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The general flow for supervised learning is:

𝒙(𝒊)

𝑖 = 1,2,3, …𝑁

𝒚(𝒊)

𝑖 = 1,2,3, …𝑁 1
0 0

7…

5

Labeled 

Training 

Data

Supervised Learning



66

The general flow for supervised learning is:

𝒙(𝒊)

𝑖 = 1,2,3, …𝑁

𝒚(𝒊)

𝑖 = 1,2,3, …𝑁 1
0 0

7…

5

Labeled 

Training 

Data

Train model
(Determine Model Parameters, 𝜽)

Supervised Learning
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The general flow for supervised learning is:

𝒙(𝒊)

𝑖 = 1,2,3, …𝑁

𝒚(𝒊)

𝑖 = 1,2,3, …𝑁 1
0 0

7…

5
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The general flow for supervised learning is:

𝒙(𝒊)

𝑖 = 1,2,3, …𝑁

𝒚(𝒊)

𝑖 = 1,2,3, …𝑁 1
0 0

7…

5

Labeled 

Training 

Data

𝒙

Model

ℎ𝜽(𝒙)

New input data 

ෝ𝒚(𝒙)

Predict

output 
Train model

(Determine Model Parameters, 𝜽)

Supervised Learning
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There are several options for models that vary in 

expressiveness and complexity:

Choice of ML Model

Polynomial Regression Random Forests Neural Networks

… …
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There are several options for models that vary in 

expressiveness and complexity:

Choice of ML Model

Polynomial Regression Random Forests Neural Networks

… …



Neural Networks
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Neural networks take inspiration from biological neurons:

By Egm4313.s12 (Prof. Loc Vu-Quoc) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72801384
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+

𝑥1

𝑥2

𝑥𝑁

.

.

.

1
𝜃0

𝜃1

𝜃2

𝜃𝑁

𝑦

Nonlinear “Activation” Function

Weights

𝜽𝑇෥𝒙 𝐴(𝜽𝑇෥𝒙)

“Mathematical” neuron architecture:

Artificial Neuron
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Most common activation functions used in practice:

ReLu Sigmoid tanh

𝐴 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
𝐴 𝑥 =

1

1 + 𝑒−𝑥
𝐴 𝑥 = max{0, x}

Artificial Neuron



Neural Networks
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• Uses mathematical neurons 

as building blocks.  

• Neural networks can be 

tuned to map highly 

nonlinear input-output 

relationship.

• Sometimes called a 

Universal Approximator.
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Extraction of Whistlers
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• Spectrograms can be treated as 

“images”.

• Whistlers are the “objects” in the 

images.

• When dealing with images, a 

Convolutional Neural Network 

(CNN) is a more efficient starting 

point.



Convolutional Neural Networks
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• 1080p images have ~2M 

pixels…too many features for a 

standard neural network.

• A better approach is to first 

extract higher level features 

(edges, waviness, etc.).

• Convolutional Neural Networks 

(CNN) learn convolutional filters 

to reduce dimensionality. https://www.jeremyjordan.me/convolutional-neural-networks/
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End to end architecture of CNN:

https://developersbreach.com/convolution-neural-network-deep-learning/

Convolutional Neural Networks



Mask Regional CNN

79

• Mask Regional Convolutional 

Neural Network (MRCNN) 

was originally created by 

Facebook AI Research for 

object detection/extraction.

• Has two major features:

 Classifies objects.

 Determines pixels (mask) 

corresponding to the 

object.

“M-RCNN”
[He et al.,2018]



Application to Whistlers
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• Spectrograms can be treated as 

“images”.

• Signals of interest are “objects”.

• The model is being trained on:

 Whistlers

 Chorus bands

 Hiss bands

 Triggered emissions

 CW/Transmitter signals



MSRCNN Results
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• Mask Scoring Regional Convolutional Neural Network (MSRCNN) is typically used for object 

detection/extraction in images.

• Spectrograms are treated as images, whistlers are the objects. 

Original Spectrogram Whistler Track Extraction

[Harid et al., 2021]



MSRCNN Results
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• This ML approach allows for multiple “classes” of whistlers:

Single Whistler Group Whistlers



MSRCNN Results

83

• This ML approach allows for multiple “classes” of whistlers:

Single Whistler Group Whistlers

VERY COMMON!



Palmer Station: Diurnal Variation
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• Diurnal variation (relative to conjugate 

time) is quantified over the entire course 

of 2007.

• Results show a deep minimum at noon 

and local maxima at morning/evening 

(conjugate time). 

• Higher whistler counts are observed 

during daytime compared to nighttime.

• This strong diurnal dependence can 

provide insight on the geophysical 

environment (future work).



Palmer Station: Comparison to Lightning
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• Palmer conjugate point is 

located on the east coast of 

North America.

• Source of whistlers are from 

lightning across North 

America.

• Palmer whistlers can be 

compared to lightning data in 

North America.



Palmer Station: Comparison to Lightning

86

• Results are compared to lightning 

data in North America using NLDN 

(National Lightning Detection 

Network).

• Results shows excellent correlation 

on monthly timescales for entirety of 

North American lightning.

• Other geophysical parameters are 

also likely important and impacting 

correlation (future work).
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• Correlation can be computed as a function of distance from the conjugate point.
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Non-Localization of Whistlers?
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• Correlation can be computed as a function of distance from the conjugate point.

• The causative lightning sources might be more spread out than previously thought.

Alvina, 2022 

(MS Thesis)



Other Recent Works

93

Several research groups are now using machine learning methods for 

automated VLF signal detection: 

• Pataki et al., 2022 - Monitoring Space Weather: Using Automated, Accurate Neural 

Network Based Whistler Segmentation for Whistler Inversion

• Maslej-Krešňáková et al., 2021 - Automatic Detection of Atmospherics and Tweek

Atmospherics in Radio Spectrograms Based on a Deep Learning Approach

• Jin et al., 2021 - Advances in the automatic detection algorithms for lightning whistlers 

recorded by electromagnetic satellite data

• Wang et al., 2020 - Classification of VLF/LF Lightning Signals Using Sensors and Deep 

Learning Methods

• Konan et al., 2020 - Machine Learning Techniques to Detect and Characterise Whistler 

Radio Waves

• Ahmad et al., 2019 - Automatic Detection of Lightning Whistlers Observed by the Plasma 

Wave Experiment Onboard the Arase Satellite Using the OpenCV Library
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Summary

95

• ELF/VLF waves are ubiquitous in near-Earth space.

• Waves have frequency-time signatures on spectrograms.

• Large datasets are now available from ground-based and spacecraft 

measurements.

• We utilized the MSRCNN method for large scale extraction for 

whistlers from ground-based data.

• Machine learning methods are powerful tools for automatically 

extracting ELF/VLF signals from spectrogram data.



Future Work

96

• Other classes of whistler-mode waves also have a characteristic 

frequency-time signature on spectrograms.

• The machine learning formalism is general enough that it can be easily 

extended to other signals

Li et al., 2019
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• The model is currently being 

extended to other signal classes 

including:

 Chorus bands

 Hiss bands

 Triggered emissions

 CW/Transmitter signals

• Still very much part of active 

research…more to come!

Future Work
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Future Work
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• Extend machine learning models to other signal classes.

• Run ML models on spacecraft data (such as 

RBSP/Arase/MMS etc.).

• Begin larger collaborations using machine learning 

models for signal detection across the space physics 

community! 



THANK YOU!

Questions?
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