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« Radio waves in the near-Earth
space environment are generated

via several different processes e dT s
Noise o g A
« One major classes of waves are Enhanced : L& e
) _ EMIC SN\ b \ Frequenc
whistler-mode waves in the Waves Ay . B Woves
ELF/VLF band (<30 kHz). f ”

Magnetic
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Credits: NASA's Goddard Space Flight Center/Mary Pat Hrybyk-Keith
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Background Cold
Plasma:

E~1eV (12,000°K)
N ~ 100 - 1000 el/cc
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= Electron gyromotion due to geomagnetic field.

Gyro-frequency
(fe =%, 1-100 kHz range)
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= Exists only in magnetized plasmas. ‘i‘”

= ELF/VLF range in the magnetosphere: < 30 kHz.

Ao
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Background Cold
Plasma:

E~1eV (12,000°K)
N ~ 100 - 1000 el/cc
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* Whistler-mode Waves can

interact with electrons via Wa‘.’e/ y
Doppler-shifted-cyclotron /1
resonance (gyro-resonance). /i

= Resonant electrons can transfer
large amounts of energy to/from Electron/'

waVves.

» Understanding characteristics of
whistler-mode waves is crucial to
space weather modeling! ) /
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Naturally Sourced:
* Chorus
* Hiss
 Lightning-Whistlers

Artificially Sourced:
* VLF transmitters + Triggered Emissions
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Naturally Sourced:

 Lightning-Whistlers
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 ELF/VLF waves are typically analyzed using spectrograms (STFT).

* Whistlers are observed on a spectrogram as descending tones.

Stanford VLF Palmer Station 2004-07-23
8000

= - £ e =

Frequency (Hz)
P
&)
e)
e)
dB-fT/Hz'"

0355 0355:31
Time (HHMM:SS)

15



% University of Colorado L|ghtn|ng WhlStlerS

Denver

 \Whistlers are in the VLF
band (<30 kHz).

From RBSP in 2015 (https://youtu.be/ZVIZ5ikvet8)

vVan Aden AU (gt channe)

* Acoustic waves in the VLF =S
band are audible.

« The name “whistler”
reflects the descending o
whistle-like sound when ;- | wr
listened to.

16


https://youtu.be/ZVlZ5ikvet8

@]‘gg%;s‘tyef@obrado Very Brief History of Whistlers

* First comprehensive investigation of whistlers was by Storey, 1953.

) o I
1 o e 2 S i Rl ke
T AMOMONAS
ol
4 - :.; - - ---
-
5 e o
= T Ad 2 @
1
|
05— 1
|
I 3] ¥ | 1 = 1 » |
o] I 2 3 4 5

time (sec)

Ficure 1. Sound spectrograph record of a whistler following an atmospheric click.
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* First comprehensive investigation of whistlers was by Storey, 1953.
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Ficure 1. Sound spectrograph record of a whistler following an atmospheric click.
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* First comprehensive investigation of whistlers was by Storey, 1953.
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Ficure 1. Sound spectrograph record of a whistler following an atmospheric click. time (sec)
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* First comprehensive investigation of whistlers was by Storey, 1953.

As already mentioned, the theory of Barkhausen & Eckersley predicted that the frequency
(f) in the whistler should be related to the time (#) after the original lightning flash by the

expression t = Dxf.
X =
— zs il i
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Ficure 1. Sound spectrograph record of a whistler following an atmospheric click. time (sec)
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 Lightning EMPs (sferic) can leak into the magnetosphere and
propagated in the whistler-mode:

21
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Whistler —

Source Lightning “Sferic"

22



@]‘ Jniersity of Colorado \Afh|stlers: Plasmasphere Remote Sensing

* The whistler shape (and/or “nose frequency”) can be used to remotely
determine the plasmasphere’s electron density...t,~./N,

Carpenter, 1988 104

BY LW 2043 UT

Park et al., 1978 "
103‘ “ ., : -

n.q(’llcm 3)
S
i
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Johnson et al., 1999

 Whistlers can interact with
radiation belt electrons via
gyro-resonance.

« Some of these electrons
can precipitate onto the
atmosphere/ionosphere.

* Precipitation can distort
sub-ionospheric VLF
signals.

Time (UT) 24
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* Whistlers can trigger free-running emissions and emissions that
resemble upper-band chorus.

Nakamura and Ondoh, 1989 Hosseini et al., 2019

Chistochina 25-Sep-2004 UT N/S Antenna
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Whlstler at Palmer Statlon Antarctlca 100

« Understanding whistler
Impacts is an important

component space weather. 90
N
- Automated detection is 3 | a0
required to gain a thorough § 2
statistical picture. g |
S
» Realistic data (especially -
ground-based data), is very 60
noisy which makes
automation difficult. 50

Time [seconds] after 0838:29 UT
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 Traditional signal detection techniques utilize information about the
signal’s structure (shape, duration, etc.).

 The most common method utilizes a cross-correlating with the
expected signal. This is known as a matched filter.

g 4t @5k ANE 2. 2 0 231 %
-

= Sampling A
& » A

Matched L__ W% /| —dthreshold ' W1\ /LA f=—"11011"
Filter \ # ‘ Decisor :

By El pak at English Wikipedia - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1874370 -



@]‘ niversity of Golorado Example: Bit Stream Detection

« Consider the case of detecting bits represented by rectangular pulses

« Examples of “1” and “0” are below:

Bit ll1ll Bit IIDII
1 17
0.5} 0.57
% 0 % 0
057 0.5}
A7 | -1 . | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t [sec]

t [sec]
29
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* More generally a bit stream can be represented by a sequence of 1s
and Os:

Ideal Bit Stream

t [sec] 30
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* More generally a bit stream can be represented by a sequence of 1s

and 0s:
Ideal Bit Stream
i
51
o
5k
0 1 2 3 4 5 6

t [sec] 31
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* More generally a bit stream can be represented by a sequence of 1s

and 0s:
Ideal Bit Stream
i
51
S ot
5k
0 1 2 3 4 5 6

t [sec] 32
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* More generally a bit stream can be represented by a sequence of 1s

and 0s:
Ideal Bit Stream
11
st
0 1 2 3 4 5 6

t [sec] 33
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* More generally a bit stream can be represented by a sequence of 1s

and 0s:
Ideal Bit Stream
S i i l
1 1 0
For
s
0 1 2 3 4 5 6

t [sec] 34
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* More generally a bit stream can be represented by a sequence of 1s
and Os:

Ideal Bit Stream

1 1 0o 1 0 0

t [sec] 35
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* The individual bits can be detected using a matched filter (cross-
correlation):

Ideal Bit Stream

5_

s(t)

t [sec] 36
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* The individual bits can be detected using a matched filter (cross-
correlation):

Ideal Bit Stream

5_

t [sec] 37
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* The individual bits can be detected using a matched filter (cross-
correlation):

Ideal Bit Stream

Slide and Integrate

t [sec] 33
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results

I I I I
o —Input Bit Stream

——Matched Filter Output

s(t)

t [sec] 39
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
' I i [ [
S5 E — Input Bit Stream
| | | —Matched Filter Output

s(t)

t [sec] 40
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
' I i [ [
S5 E — Input Bit Stream
| | | —Matched Filter Output

t [sec] 4l
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
' I i [ [
S5 E — Input Bit Stream
| | | —Matched Filter Output

t [sec] 42
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
' I i [ [
S5 E — Input Bit Stream
| | | —Matched Filter Output

t [sec] 43
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
i i [ [
S5 i E — Input Bit Stream
| | —Matched Filter Output

t [sec] a4
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
i i [ [
S5 i E — Input Bit Stream
| | —Matched Filter Output

t [sec] 45
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
' I i [ [
S5 E — Input Bit Stream
1 1 O | —Matched Filter Output

t [sec] 46
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* The output of the matched filter has positive peaks for “1” and
negative peaks for “0”.

Matched Filter Results
: 1 i I [
or —Input Bit Stream
' ' | | —Matched Filter Qutput

t [sec] 47
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* |n practice, realistic signals are received In a noisy environment:

Noisy Bit Stream
i

61 [ Noisy[]
f f f f |7 Ideal
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 The matched filter output Is almost the same as the for noise-free

environment!
Noisy Bit Stream
| ' 1 ] ]
6 ——Noisy|
——Ideal |
4+ = mmmm \latched Filter Output

t [sec] 49
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 The matched filter technigue works extremely well in a noisy

environment!
Noisy Bit Stream
| | T ! !
6 F ——Noisy;
——Ideal |
4+ = mmmm \latched Filter Output

t [sec] 20



@]‘ggg’ﬁ;fiwaO'Orado Extension to Whistler Detection

This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):

Frequency, kHz
o o o 3
_{

.

51
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This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):

Frequency, kHz
- - N
(4]

52



@]‘ggg’ﬁ;ﬁw%'wado Extension to Whistler Detection

This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):

~ Whistler Template

Frequency, kHz
in ot - n
w

Time, msec

53




@]‘ggg’ﬁ;ﬁw%'wado Extension to Whistler Detection

This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):

i ) ) 1 1 1 1 1
= & 100
- vl 1T 80
15 | | ' | -
| ' R |- | | o
o | | A -
| ! | 20
51 | ‘ |
1 l 1 1 ] ! !
0.5 1 1 2 3 3.5

~ Whistler Template

Frequency, kHz
n

Time, msec

54




@]‘ggg’ﬁ;ﬁw%'wado Extension to Whistler Detection

This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):

= : ! : : l * . . 100
| | - ui We 80
- : . : .
3 : . ' | r\ ! ’ ' . 60 =
10 * — \\ ‘» ' { ’ E 40
s & ' | NNNT ‘ i 20
-y
1 l 1 1 l 1 | | l
0.5 1 1.5 2 25 3 3.5

~ Whistler Template

Frequency, kHz
n

Time, msec
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@]‘ggg’ﬁ;ﬁw%'wado Extension to Whistler Detection

This type of “template matching” technique has been quite successful
when applied to detecting whistlers (see Lichtenberger et al. 2008):
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s ) Detector threshold
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Modified versions of this technique have been successful when applied
to detecting various types of whistler-mode waves...they all require
explicit knowledge of the signal structure!

Compston, 2016 Gupta et al., 2021

5000 80 o
Original tr Id sity (PSD adon tran§form R(p, 0) of 2
gf( y)p Detocted spin ( Tnmd) 10log(nT2Hz) chorus spines S, (xy)  10log(nT/Hz-sec
4000' I I

2200 20

o Rl ”“ t W l & b bright spot around
g 2000 4 \ * }* R‘q 20 6= 90° due to 18
' i 350
B0 o 1800 / ’ overlap between L
z‘é‘\ 1R TR ; | 6 I O | S-features
o = = ?:: 1600 |8 {1 SIS | B / I ‘ I | 8 -40 3 ..
% 3000 7°C =2 — 1400 K1 dr T 5 2 A
s Jy : 5250 12
::“-‘ OD 5 i | \ | ! l’r_'- ~0U >
g 140 5 3 1200 [ S8 L & v
= — g ' 2200 Zac ! 10
T ZDDD - 51000 480 ;,_: 8
= % 1
fy 5 .
= 600
20 5 100 4
1000 T 400 | I -120
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Input Hidden Layer Output Layer
1 | | | |
* We now have thousands of P oy o
tansig A1 tansig
events of waves relevant to the 30x19>: 7 L 1x-:-o>: s
. —— 9
space environment. | >TD; | > Ix1
19x1 20x1 Ix1

« Large datasets permit the use
of data-driven models.

ik
o0

12

i
O
g dB—fT/Hz '~

f=

« Machine learning approaches
are becoming very useful for
detecting/extracting signals
from the space environment.

Golden 2011
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|
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o
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1

Original Spectrogram | Extracted Whistlers

Harid et al.,
2021 (GRL)

https://venturebeat.com/2019/05/20/googles-lung-cancer-detection-ai-
outperforms-6-human-radiologists/

1
M4 AR R - w4l
8 hitps.//www.google.com/search?client=ms-android-google&ei=XvkYX0j7( :
X B
(O windwerk X
(O time right now X
T oY, U
- e
L 2
Handwrite here!
2

wm o ® @ KNS

https://ai.googleblog.com/2019/03/rnn-based-handwriting-recognition-in.html
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Harid et al.,
2021 (GRL)
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« Supervised Learning describes machine learning models that are
trained with labeled “ground truth” data.

62
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* Supervised Learning describes machine learning models that are

trained with labeled “ground truth” data.

e Y A 1N
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* Supervised Learning describes machine learning models that are
trained with labeled “ground truth” data.

S N E R

Output Label 0 1 1 7 0
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The general flow for supervised learning is:

£®
i=123, ...N @

Labeled
Training
Data

y®
i =123,..N
65
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The general flow for supervised learning is:

£®
i=123, ...N @

Labeled Train model

a _e_e (Determine Model Parameters, 8)
Training

Data o

y®
i=1,23,..N
66
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The general flow for supervised learning is:

£®
i=123, ...N @

Train model
Lab_e!ed (Determine Model Parameters, 6) Model
Training he (%)
Data >

y®
i =123,..N
67
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The general flow for supervised learning is:

x®
i=123,..N @ X New input data

Train model Predict
Labeled (Determine Model Parameters, 6) Model output
Training hg(x) A~
Data > > y(X)

y®
i=1,23,..N
68
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There are several options for models that vary In
expressiveness and complexity:

Polynomial Regression Random Forests Neural Networks

Random Forest Simplified

-100 -75 =50 -25 0.0 2.5 5.0 75 10.0
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There are several options for models that vary In
expressiveness and complexity:

Neural Networks
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Neural networks take inspiration from biological neurons:

Dendrite

Axon termlnaJ

2,

ym

Soma (cell body)

/
S

Myelin sheat

Outputs

Output points = synapses

Myelinated axon trunk

-

Inputs >

Input points = synapses
71
By Egm4313.512 (Prof. Loc Vu-Quoc) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72801384
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*“Mathematical” neuron architecture: Nonlinear “Activation” Function

0T% A(0T%)
X1

72
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Most common activation functions used in practice:

RelLu Sigmoid tanh
eX — =X
A(x) = max{0, x} A(x) = 1+ ox A(x) = o% 1 g%

L
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Uses mathematical neurons
as building blocks.

( hidden layer 1 hidden layer 2 hidden layer 3
input layer

=

:,-_-:_\A_“_:_- :

Neural networks can be S 0 > ;(,, i
. NS v N Sy N N A, 3 N

tuned to map highly N2 f-"” SN ﬂ‘\:;?;‘,r.

. . N A . R S o N g‘;f L S o
nonlinear input-output S _; Ly St SO
relationship. NSNS @

Sometimes called a
Universal Approximator.
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almer Station Example

e Spectrograms can be treated as 4 e —

¢ U

« Whistlers are the “objects” in the
Images.

"IM ke
. f".‘l.'.‘.’.f'i
o,

Frequency [kHZ]
el g iy 'IH:I'.'Ii'r . .I : , : !
i ] @ﬂ:gf: b i

 When dealing with images, a
Convolutional Neural Network
(CNN) Is a more efficient starting
point. ok

o e A TG O SO
| | - |

1 1.5 2 2.5 3
Time from SOF [sec]

76



(@4 unersivorcaoc Convolutional Neural Networks

Denver

Convolution layer

« 1080p images have ~2M input Apply fiter

pixels...too many features for a
standard neural network.

* A Dbetter approach is to first
extract higher level features
(edges, waviness, etc.).

f?,g, e
&
é"q._», »

* Convolutional Neural Networks
(CNN) learn convolutional filters
tO reduce dlmenSIOnaIIty' https://www.jeremyjordan.me/convolutional-neural-networks/
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End to end architecture of CNN:

Input

ol L
R

4
’
< v
‘ -
.
) -
1‘ .
N .
.
_—
bel R el el By [RUEI RS ARl
: ( !,\\l-.-mlm s -~
N g AN
S -
RN TR o
_ P e " “ S ~

Convolution Convolution  Convolution n
Kernel ReLU ReLU ReLU Flatten
o Fully
- Feature Maps - ~———Connected. '
Layer
| ] | | | |

. . : Probabilistic
Feature Extraction Classification Distribution

https://developersbreach.com/convolution-neural-network-deep-learning/
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 Mask Regional Convolutional
Neural Network (MRCNN)
was originally created by
Facebook Al Research for
object detection/extraction.

“M-RCNN”
[He et al.,2018]

« Has two major features:
» Classifies objects.
» Determines pixels (mask)
corresponding to the
object.

| RolAlign| _
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« Spectrograms can be treated as

Palmer Station Example
“images’”. ] Y I
* Signals of interest are “objects”. _ 8 i
< 6l an- , 195
» The model is being trained on: & B2 0 3
g ¢ Tl )
» Whistlers I 4l
» Chorus bands 2 [
» Hiss bands
» Triggered emissions e LB Ed kst B
> CW/Transmitter signals 1 15 2 2.3 3

Time from SOF [sec]
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» Mask Scoring Regional Convolutional Neural Network (MSRCNN) is typically used for object
detection/extraction in images.

. . . [Harid et al., 2021]
« Spectrograms are treated as images, whistlers are the objects.

Original Spectrogram Whistler Track Extraction
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* This ML approach allows for multiple “classes” of whistlers:

Group Whistlers
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* This ML approach allows for multiple “classes” of whistlers:

Group Whistlers
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’ Dlurnal Varlatlon (relatlve to Conjugate 2007 East-West Whistler Counts vs Conjugate Local Time (Hr)
time) is quantified over the entire course
of 2007.

65K
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 Results show a deep minimum at noon
and local maxima at morning/evening
(conjugate time).

™~
3
> m

East-West Whistler Counts

* Higher whistler counts are observed
during daytime compared to nighttime.
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« This strong diurnal dependence can

provide insight on the geophysical 8 ‘
enV|r0nment (future Work)_ o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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) Palmer Conjugate pOInt IS Visualization of Lightning Counts (NLDN July, 2007)
located on the east coast of
North America.

« Source of whistlers are from . DK
lightning across North : % ST ik AT
America. ¥ % v}
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« Palmer whistlers can be
compared to lightning data in

North America.
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Lightning vs Non-Normalized East-West Whistler Counts (2007)

* Results are compared to lightning
data in North America using NLDN 2ou
(National Lightning Detection
Network).
 Results shows excellent correlation I
on monthly timescales for entirety of
North American lightning.
« Other geophysical parameters are
also likely important and impacting H N .-
correlation (future work). I I L
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Results are compared to lightning
data |n North Amenca US|ng NLDN Scatter Plot - Lightning vs Normalized Whistler Counts 2007

(National Lightning Detection - . ° .
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« Correlation can be computed as a function of distance from the conjugate point.

Visualization of Lightning Counts (NLDN July, 2007)
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« Correlation can be computed as a function of distance from the conjugate point.

Visualization of Lightning Counts (NLDN July, 2007)
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« Correlation can be computed as a function of distance from the conjugate point.

Visualization of Lightning Counts (NLDN July, 2007)
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« Correlation can be computed as a function of distance from the conjugate point.
« The causative lightning sources might be more spread out than previously thought.

R-Squared values for Buffer Distances (km) from Conjugate Point for Scatter Plots between NLDN and

Visualization of Lightning Counts (NLDN July, 2007) N lized Whistler C s (2007)
ormalize istler Counts
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Several research groups are now using machine learning methods for
automated VLF signal detection:

Pataki et al., 2022 - Monitoring Space Weather: Using Automated, Accurate Neural
Network Based Whistler Segmentation for Whistler Inversion

Maslej-Kresnakova et al., 2021 - Automatic Detection of Atmospherics and Tweek
Atmospherics in Radio Spectrograms Based on a Deep Learning Approach

Jin et al., 2021 - Advances in the automatic detection algorithms for lightning whistlers
recorded by electromagnetic satellite data

Wang et al., 2020 - Classification of VLF/LF Lightning Signals Using Sensors and Deep
Learning Methods

Konan et al., 2020 - Machine Learning Techniques to Detect and Characterise Whistler
Radio Waves

Ahmad et al., 2019 - Automatic Detection of Lightning Whistlers Observed by the Plasma
Wave Experiment Onboard the Arase Satellite Using the OpenCYV Library
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1. Overview of Whistler Mode Waves

2. Traditional Methods of Signal Detection
3. Basic Overview of Neural Networks

4. Whistler Extraction using MSRCNN

5. Summary and Future Work
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ELF/VLF waves are ubiquitous in near-Earth space.
Waves have freguency-time signatures on spectrograms.

Large datasets are now available from ground-based and spacecraft
measurements.

We utilized the MSRCNN method for large scale extraction for
whistlers from ground-based data.

Machine learning methods are powerful tools for automatically
extracting ELF/VLF signals from spectrogram data.
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 Other classes of whistler-mode waves also have a characteristic
frequency-time signature on spectrograms.

* The machine learning formalism is general enough that it can be easily
extended to other signals

High-resolution wave measurements

Upper-band chorus
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 The model is currently being
extended to other signal classes
iIncluding:

» Chorus bands E
» Hiss bands .3
» Triggered emissions

» CW/Transmitter signals

Emission 0.88 Emisson 0.80 Emlstsrlr‘qgs%ﬁou 75

Seed 1).46

Emissiori 0.71
Szed 0.3

«  Still very much part of active
research...more to come!
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The model is currently being
extended to other signal classes
iIncluding:

» Chorus bands

» Hiss bands

» Triggered emissions

» CW/Transmitter signals

Still very much part of active
research...more to come!

Future Work
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CHiss 0.70rus Emissions 0.36
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« Extend machine learning models to other signal classes.

 Run ML models on spacecraft data (such as
RBSP/Arase/MMS etc.).

* Begin larger collaborations using machine learning
models for signal detection across the space physics
community!
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THANK YOU!

Questions?



