Magnetometers for Planetary Science (with a focus on Planetary Interiors)

Michele K. Dougherty

Outline

- magnetometer sensors we build:
 - Fluxgates
 - AMRs
 - their differences
- science we do from magnetic field data, focus on areas linked to interior of planetary bodies
- Cassini mission:
 - Saturn's surprising internal planetary field and what end of mission will do for us
 - discovery of Enceladus plume, driven by magnetic field observations
- JUICE mission to Jupiter's moons:
 - induced field signatures from Galilean moons
 - implications for interior structure
 - how science requirements are driving instrument design and accommodation

What do we mean by space magnetometer?

- Three magnetic field components in range 0 30Hz
- Wide measurement range 0.01nT 50,000nT
- Robust, reliable, high performance (low noise stable offsets)
- Optimised for power, mass, radiation etc.
- Sensors fitted to a boom away from S/C magnetic disturbance
- Whilst in space, instrument offsets drift
- So need to calibrate:
 - on ground (by measurement)
 - in space (dual gradiometer technique, solar wind technique, spinning s/c, rolling s/c, absolute and vector sensors)
 - s/c magnetic cleanliness program

Anatomy of a Fluxgate

- Operating Principle
 - Soft permeable core driven around hysterisis loop
 - H_{EXT} results in a net changing flux
 - Field proportional voltage induced in sense winding
 - Closed loop improves linearity

• Advantages

- Low noise ~ 20pT/ √Hz @1Hz
- Wide dynamic range
- Mature technology
- Relatively inexpensive

• Disadvantages

- Sensor mass
- Sensor offset
- Power ~ 1W
- In-flight calibration overhead

Anisotropic Magnetoresistance

Magneto Resistance Effect

- Change of resistance in magnetic field
- AMR single layer permalloy,
- AMR ΔR/Rmin of order 1-2%
- AMR has lowest noise floor
- Johnson noise limited no shot noise

Barber Poles

- Max, sensitivity & linearity at M v H 45°
- Conductive strips for linear operation

AMR Sensors

- Thin film solid state devices
- Implemented as Wheatstone bridge
- Mass <1g, Ceramic package
- Sensitivity increases with increasing bridge voltage, V_B

$$R = R_0 + \Delta R_0 \cos^2(\theta(H))$$

MAG instrument comparison

Parameter	Fluxgate	Magneto-resistance	Comment
Composition	2 fluxgate sensors, harness, electronics box	2 hybrid AMR sensors, harness, electronics box	Multiple sensors needed for calibration, boom-mounting may also be required.
Mass	Fluxgate Sensors: 2x300g Electronics: 2500g Harness 100g Total: 3200g	AMR Sensors: 2x10g Electronics: 1000g Harness 50g Total: 1070g	Assuming stand alone MAG electronics box, could both be reduced if sensors connect to a common DPU.
Power	4.0 W	1.3 W	Sensor heaters not included.
Volume (cm^3)	Each sensor: 11 x 7 x 5 Electronics (3/4 boards): 8 x 8 x 3	Sensor: 1 x 1 x 3 Electronics: (1/2 boards) 5 x 7 x 3	Assuming stand alone MAG electronics box, could both be reduced if sensors connect to a common DPU
Operating temperature	-150degC to 90degC	-150degC to 90degC	Heaters needed if interface temp below -150degC
Radiation	>300kRad heritage	>100kRad (without shielding)	Radiation a bigger issue for MAG electronics
Accuracy	0.1nT	Between 1~2nT	
Calibration Drift	<0.1nT/degC	1nT/degC	MR drift expected to improve with further technical development

FluxGate Magnetometer (FGM)

Vector Helium/Scalar Magnetometer (V/SHM)

- Mounted on 11m boom
- Use SCAS system to help with understanding of orientation of boom
- V/SHM stopped working in 2005
- Now we need to roll s/c to calibrate

Planetary Period Oscillations

Imperial College London

Gurnett et al., 2010, Provan et al., 2014

Prior to Proximal Orbits

- Characterisation of external periodic magnetic fields
- Unify different elements of external magnetic fields (periodic, current sheet, field aligned currents)
- Is there a current system linked to rings of Saturn?
- Ensure MAG team has strategy in place:
 - Instrument requirements are met
 - Necessary calibration is carried out
 - Data analysis tools in place
 - Science return

Enceladus

In inner magnetosphere

Source of Saturn's E ring?

Relatively young surface

Three Cassini flybys (1265km, 500km, 173km)

Cracks on surface

Initial ideas after 2 flybys

 Diffuse atmosphere around Enceladus, strong source to maintain?

- Strong ion cyclotron wave activity water group ions
- Seemed to be additional signature around CA of March flyby in addition to the atmospheric type signature
- Field is being pulled towards Enceladus almost as if Enceladus is acting as an amplifier of the Saturn field
- Cassini Project moved 3rd flyby much closer

• Fractures/ Tiger Stripes near south pole

- Warm Spot near south pole
- Internal heat leaking out?
- Warmest temperature over one of fractures
- ISS & CIRS data (Porco et al., Spencer et al, 2006)

Enceladus Temperature Map

Predicted Temperatures

65

Observed Temperatures

Exploration of the habitable zone

JUICE

Three large icy moons to explore

Ganymede

- Largest satellite in the solar system
- A deep ocean
- Internal dynamo and an induced magnetic field – unique
- Richest crater morphologies
- Archetype of waterworlds
- Best example of liquid environment trapped between icy layers

Callisto

- Best place to study the impactor history
- Differentiation still an enigma
- Only known example of non active but ocean-bearing world
- The witness of early ages

Europa

- A deep ocean
- An active world?
- Best example of liquid environment in contact with silicates

Science Case I : Resolve interior structure of icy moons

- Resolve strength of induced magnetic fields
- What are depth of the liquid oceans beneath icy surfaces
- What is the conductivity of the water?
- Resolve strength of Ganymede internal magnetic field
- Implications for the deep interior structure of Ganymede
- Compare differentiated with undifferentiated body

Science Case II : Dynamical plasma processes

- Magnetic field measurements are vital to allow a better understanding of dynamical plasma processes
- Interactions of the magnetosphere of Ganymede within the Jovian magnetosphere
- Dynamics of Jovian magnetodisk
- Generation of aurora and of the various current systems which arise

Normalised response (induction/primary field ratio) as a function of the conductivity and thickness of the ocean for two primary frequencies [synodic period (red) and orbital period, 171.72hr (blue)]. The assumed ice thickness is 150km and the mantle conductivity is 10⁻⁴ S/m).

Magnetic Fields to be resolved at Ganymede

Variable (10h, 171h, 27days)

Static

Variable (< 10min, 10h)

Left: Jupiter's background field plus Ganymede's induced magnetic field <u>Middle</u>: combined with internally generated magnetic field <u>Right</u>: interacts with Jupiter's magnetospheric field to produce minimagnetosphere

Instrument Concept Summary

- J- MAG is DC (0-64Hz) Magnetometer featuring dual fluxgate sensors plus an absolute scalar sensor
- Sensors are mounted on S/C provided 10.5m magnetometer boom
- Fluxgate sensors are non-identical designs
- Outboard sensor built by Imperial College London
- Inboard sensor built by Technical University Braunschweig (TU-BS)
- Scalar sensor built by IWF-Graz

Imperial Fluxgate

TUBS Fluxgate

IWF-Graz Scalar

