

Terrestrial planets and the Moon

D. Breuer

Institute for Planetary Research, DLR

Similarities and Diversities: Terrestrial Planets and the Moon

- Interior structure and composition
- Surface structures (volcanic and tectonic)
- Magnetic field
- Atmosphere

Interior Structure and Composition

- Mass of reservoirs (crust, mantle, core)
- Composition
- Depth of phase transitions and chemical layers
- Variations of pressure, temperature, and density

Data

- Mass
- Gravity field, rotational state, topography
- Chemistry / mineralogy of the surface
- Cosmochemical data (SNC, Moon samples)
- Data from the laboratory
- Heat flow
- Seismology

MGS Gravity Field of Mars Folie 6

Interior Structure: The Data Set

- Moon and Mars: Mass, Mol-factor, Samples, Surface Chemistry, Lunar seismology
- **Mercury:** Mass, Mol-factor, C_m/C, Surface chemistry
- Venus: Small rotation rate precludes a calculation of the Molfactor from J₂ under the assumption of hydrostatic equilibrium

Simple Two-Layer Model

$$I = \int x^2 dm$$

$$M = \frac{4}{3}\pi \left(\left(R_P^3 - R_c^3 \right) \rho_m + R_c^3 \rho_c \right)$$
$$\frac{I}{MR_P^2} = \frac{2}{5} \left(\left(1 - \left(\frac{R_c}{R_P} \right)^5 \right) \left(\frac{\rho_m}{\overline{\rho}} \right) + \left(\frac{R_c}{R_P} \right)^5 \left(\frac{\rho_c}{\overline{\rho}} \right) \right)$$

Ambiguity: three unknowns, two pieces of data

Two-layered structural models

- Non-uniqueness of even simple interior structure models with $\rho_s = 0$
 - two constraints: mean density, Mol factor
 - three unknowns: mantle and core density, core radius
- Reduce ambiguities by cosmochemistry
 - core densities ranging from pure Fe to eutectic Fe-FeS

Mantle and Core Densities and Core Mass Fraction

Detailed Models of the Interior

Structural Equations

mass, *m*

moment of inertia, θ

gravity, g

pressure, p

 $\frac{dm}{dr} = 4\pi r^2 \rho$ $\frac{d\theta}{dr} = \frac{8}{3}\pi r^4 \rho$ $\frac{dg}{dr} = 4\pi G\rho - 2\frac{g}{r}$ $\frac{dp}{dr} = -g\rho$

Model assumptions:

- Spherically symmetric and fully differentiated planets
- Hydrostatic and thermal equilibrium

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interior structure of Mars

Mars Interior Structure

Sohl and Spohn, 1997

Perovskite layer thickness near core/mantle boundary dependent on lower mantle temperature

Folie 12

Planetary Data

	Mercury	Venus	Earth	Mars	Moon
Radius	0.38	0.95	1.0	0.54	0.27
Mass	0.055	0.815	1.0	0.107	0.012
Density [kg/m ³]	5427.	5243.	5514.	3933.	3344.
MoI	0.346	?	0.3308	0.3662	0.3940
R_c/R_p	0.83	(0.55)	0.546	0.5	0.25

Interior structure: Mars

- Liquid core (constraint from tidal Love number k2)
- Iron rich mantle composition FeO 15-18% (Earth 8 %)
- Deep phase transition?
- Crustal thickness (57 ± 24 km) (constraint from higher degree of gravity and topography - GTR)

Geochemical models

- Nd anomalies in the SNCs indicate the existence of at least 3 reservoirs, which formed early and did not remix.
- As a comparison, Earth has ϵ^{142} Nd of 0 to 0.1.

- Large spatial separation and inefficent mantle mixing could account for reservoir preservation.
- This appears to be incompatible with vigorous whole mantle convection.

Martian Reservois

How did they form and remain stable over the entire Martian history?

Interior structure: Venus

- Fluid core (constraint from ٠ tidal Love number k2)
- Crustal thickness: 8 30 km ۲

D Copyright 2000 to Calvin J.

Interior structure: Moon

- Fluid core (constraint from lunar laser ranging)
- Solid inner core? (constraint from seismic data)
- Partial melt zone in deep mantle
- Anorthositic crust $(39 \pm 5 \text{ km})$

Magma Ocean Crystallization

in der Helmholtz-Gemeinschaft

- Fractional crystallization \Rightarrow unstable density gradient
- Late mantle cumulates enriched in incompatible heat producing elements

Folie 19

Slide

Interior structure: Mercury

- Thin mantle ~ 400 450 km
- Liquid core
- Crustal thickness: 35 ± 18 km (large V_c/V_m of 0.1)
- High mantle density could imply the presence of a solid FeS layer
- FeS layer would:
 - constrain T_c to 1600-1700 K.
 - reduce mantle layer to ~300 km

[Smith et al., 2012]

Interior structure: Mercury

- Thin mantle ~ 400 450 km
- Liquid core
- Crustal thickness: 35 ± 18 km (large V_c/V_m of 0.1)
- High mantle density could imply the presence of a solid FeS layer
- FeS layer would:
 - constrain T_c to 1600-1700 K.
 - reduce mantle layer to ~300 km

Core composition

- Elevated S content at surface → low fO2
- Si will partition in the core under reducing conditions
 → Fe-S-Si liquids
- Fe-S-Si liquids immiscible at P in upper core and solid FeS less dense than residual liquid

Mantle reservoirs in Mercury

 X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) : The differences in composition of various terranes indicate that Mercury has a chemically heterogeneous mantle

Similarity and Diversity of Terrestrial Planets and the Moon

- → Interior structure and composition
- → Surface structures (volcanic and tectonic)
- → Magnetic field
- **→** Atmosphere

Heat Transport Mechanisms

- Plate tectonics (Earth, early Mars?, early Venus?)
- Stagnant lid convection (Mercury, Venus?, Mars, Moon)
- Lithosphere delamination (Venus?, early Earth)

Magma transport (volcanism)

Mantle viscosity

$$\eta = C_1 \exp\left(\frac{E + pV}{RT_m}\right)$$

$$\begin{split} E &= 300 - 540 \text{ kJ/mol} \\ V &= 2 \cdot 10^{-6} - 2 \cdot 10^{-5} \text{ m}^{3}/\text{mol} \end{split}$$

Difference between plate tectonics and one-plate tectonics

- Plate tectonics: Efficient cooling of the interior
- One-plate tectonics: Inefficient cooling of the deep interior but 'thick' cold lithosphere

Mars

DLR für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

km

8

4

0

-4

-8

Crustal dichotomy

- Variation in surface age
- Crustal thickness variation (e.g., Zuber et al., 2000)
- Variation in surface composition (e.g., Christensen et al., 2000)
- Crustal dichotomy formed in the first few 100 Ma

Volcanic activity

- Strong decrease of volcanic activity with time
- Early global distribution later concentration in two provinces (Tharsis and Elysium)
- Bulk of the large volcanic provinces formed in first 1 Ga
- Average crust thickness: 33 – 81 km

articles

Episodic volcanism but also recent activity in Tharsis and Elysium

NATURE | VOL 432 | 23/30 DECEMBER 2004 | www.nature.com/nature 4 Nature Publishing Group

Crust Formation in a One-Plate Planet

✓ Melt production underneath the stagnant lid

Mantle temperature **Crustal thickness Crustal growth rate**

Crustal thickness (km)

Mars Convection Patterns

- Depth-dependent viscosity produces long-wavelength convection patterns
- Phase-transitions may even induce a degree-1 structure
- A viscosity jump in the midmantle also produces longwavelength convection patterns

Keller & Tackley, 2009

Harder & Christensen, 1996

Without endothermic phase transition:

t=1.0 Ga

Including endothermic phase transition:

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Buske, 2006

Slide 38

Investigate the role of insulating crust and depth-dependent viscosity on convection pattern

- 3D fully dynamical simulations of interior thermal evolution
- Assuming a crust
 - using the model of *Neumann et* al. [2004]
 - with low conductivity (3 W/m K)
 - enriched in HPE [Hahn et al., 2011]

Venus

- Volcanoes and volcanic lava flows are homogenously distributed at the surface
- Resurfacing of the surface
 - Catastrophic resurfacing (~ 500-700 Ma) renewed the surface
 - Equilibrium resurfacing

Thermal emissivity of the surface: Nine – hotspots - with volcanism, broad topographic rises and positive gravity anomalies have been identified

Venus:

Terra:

continental-like structures

Tessera:

highly deformed crust

Coronae:

circular domes

Mercury

- Crater and scarps cover the surface
 - old surface
 - ~ 7 km decrease of radius caused by thermal contraction since ~4 Ga (Byrne et al. 2014)

Global contraction of Mercury

- What contributes to the contraction
 - Cooling
 - Phase changes (e.g. inner core growth)

Mercury

- Messenger flybys revealed volcanic resurfacing
- Volcanism more widespread than previously expected

Planetary contraction inferred from surface tectonics and volcanic history from imaging constrain the thermal evolution of the interior and the duration of mantle convection

Moon

Crustal dichotomy: lunar mare are primarily found on near side

Moon

- Major geological units:
 - Porcellarum KREEP Terrane (PKT) (enriched in radiogenic heat sources)
 - South Pole Aitken Terrane (SPAT)
 - Feldspathic High-lands Terrane (FHT)

Origin of PKT region

- Magma ocean overturn of dense ilmenite layer below crust
- Low degree instability of dense ilmenite bearing cumulate enriched in KREEP

Zhang et al. 2013

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Laneuville et al. 2013

Folie 51

Similarity and Diversity of Terrestrial Planets and the Moon

- → Interior structure and composition
- → Surface structures (volcanic and tectonic)
- → Magnetic field
- **→** Atmosphere

Planetary Data

	Mercury	Venus	Earth	Mars	Moon
Radius	0.38	0.95	1.0	0.54	0.27
Mass	0.055	0.815	1.0	0.107	0.012
Density [kg/m ³]	5427.	5243.	5514.	3933.	3344.
MoI	0.346	?	0.3308	0.3662	0.3940
R_c/R_p	0.83	(0.55)	0.546	0.5	0.25
Dipole Moment [10 ¹⁹ A m ²]	4.9	_	7980.	-	-

But we find remnant magnetization of old crust on Earth, Mars, the Moon and Mercury (Venus we don't know)

Mars Magnetic field history

- No present-day dynamo
- Strong magnetisation of oldest parts of the Martian crust
- Magnetization of old SNC meteorite
- No magnetisation of large impact basins
- ⇒ Dynamo action before the large impacts ~4 Ga

Thermal dynamo

- Fluid motion in the liquid iron core due to thermal buoyancy (=> cooling from above)
- 'Critical' heat flow out of the core

$$q_{crit} = k \frac{\partial T}{\partial r} \bigg|_{ad} = k \frac{\alpha g T}{c_p}$$

 $q_{cm} > q_{crit}$

Chemical Dynamo

- Existence of light alloying elements in the core like S, O, Si
- Core temperature between solidus and liquidus
- Compositional bouyancy released by inner core growth

Thermal and chemical dynamo

- Mantle 'dicates' core cooling and dynamo action
- To study the magnetic field evolution of a planet, we need to know the heat transport mechanism in the mantle

Temperature evolution of the core

Present core-mantle temperature depending on mantle rheology

Early Martian (thermal) dynamo possible with a superheated core

Breuer and Spohn, 2003

Accretion and Core Formation

- \neg Isotope data (¹⁸²Hf-¹⁸²W) suggests early and rapid core formation
 - → Earth < 60 Ma
 </p>
 - → Mars < 20 Ma
 </p>

What are the initial thermal conditions after core formation?

Chemical dynamo lasts ~ 2 Ga inconsistent with observations

Williams and Nimmo, 2004

Present favorite scenario

- Early thermally driven dynamo
- Cessation of the core due to mantle cooling → heat flow decreases below heat flow along the core adiabat
- Other models assume that a large impact can stop the dynamo (e.g. Roberts et al. 2009; Arkani-Hamed 2010)
- but all scenarios predict

present-day Martian core is entirely fluid --Venus similar magnetic evolution?

Where does crystallization in the core occur?

 dT/dP_{melt} can be even negativ

The Fe-snow regime

Similarity and Diversity of Terrestrial Planets and the Moon

- → Interior structure and composition
- → Surface structures (volcanic and tectonic)
- → Magnetic field
- → Atmosphere

Planet	Mercury	Venus	Earth	6 Mars
Т _Р , К (°С)	437 (163)	232 (-41)	255 (-18)	209 (-64)
T _{obs} , K (°C)	~440 (167)	735 (462)	288 (15)	215 (-58)
Atmosphere: Pressure, kPa composition	none	9300 CO₂(0.965), N₂(0.035),	101 N ₂ (0.78), O ₂ (0.21), Ar(0.009),	0.64 CO₂(0.95), N₂(0.03), Ar(0.02),
[trace gases]		[SO ₂ , Ar]	[CO ₂ , H ₂ O]	[O ₂ , CO]

Terrestrial planets and the Moon

 Each planet has its own specific history depending on interior structure and composition, distance to the sun and initial conditions (e.g. magma ocean phase)

